4.6 Article

Caffeine abolishes the mammalian G2/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 275, 期 14, 页码 10342-10348

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.275.14.10342

关键词

-

资金

  1. NCI NIH HHS [CA-50771-09] Funding Source: Medline

向作者/读者索取更多资源

Recent evidence indicates that arrest of mammalian cells at the G(2)/M checkpoint involves inactivation and translocation of Cdc25C, which is mediated by phosphorylation of Cdc25C on serine 216, Data obtained with a phospho-specific antibody against serine 216 suggest that activation of the DNA damage checkpoint is accompanied by an increase in serine 216 phosphorylated Cdc25C in the nucleus after exposure of cells to gamma-radiation. Prior treatment of cells with 2 mM caffeine inhibits such a change and markedly reduces radiation-induced ataxia-telangiectasia-mutated (ATM)-dependent Chk2/Cds1 activation and phosphorylation. Chk2/Cds1 is known to localize in the nucleus and to phosphorylate Cdc25C at serine 216 in vitro. Caffeine does not inhibit Chk2/Cds1 activity directly, but rather, blocks the activation of Chk2/Cds1 by inhibiting ATM kinase activity. In vitro, ATM phosphorylates Chk2/Cds1 at threonine 68 close to the N terminus, and caffeine inhibits this phosphorylation with an IC50 of approximately 200 mu M. Using a phospho-specific antibody against threonine 68, we demonstrate that radiation-induced, ATM-dependent phosphorylation of Chk2/Cds1 at this site is caffeine-sensitive. From these results, we propose a model wherein caffeine abrogates the G(2)/M checkpoint by targeting the ATM-Chk2/Cds1 pathway; by inhibiting ATM, it prevents the serine 216 phosphorylation of Cdc25C in the nucleus. Inhibition of ATM provides a molecular explanation for the increased radiosensitivity of caffeine-treated cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据