4.4 Article

Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from? A pathway-oriented perspective

期刊

JOURNAL OF THEORETICAL BIOLOGY
卷 203, 期 3, 页码 229-248

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1006/jtbi.2000.1073

关键词

-

资金

  1. NIGMS NIH HHS [GM57089] Funding Source: Medline

向作者/读者索取更多资源

Cellular metabolism is most often described and interpreted in terms of the biochemical reactions that make up the metabolic network. Genomics is providing near complete information regarding the genes/gene products participating in cellular metabolism for a growing number of organisms. As the true functional units of metabolic systems are its pathways, the time has arrived to define metabolic pathways in the context of whole-eel metabolism for the analysis of the structural design and capabilities of the metabolic network. In this study, we present the theoretical foundations for the identification of the unique set of systemically independent biochemical pathways, termed extreme pathways, based on system stochiometry and limited thermodynamics. These pathways represent the edges of the steady-state flux cone derived from convex analysis, and they can be used to represent any flux distribution achievable by the metabolic network. An algorithm is presented to determine the set of extreme pathways for a system of any complexity and a classification scheme is introduced for the characterization of these pathways. The property of systemic independence is discussed along with its implications for issues related to metabolic regulation and the evolution of cellular metabolic networks. The underlying pathway structure that is determined from the set of extreme pathways now provides us with the ability to analyse, interpret, and perhaps predict metabolic function from a pathway-based perspective in addition to the traditional reaction-based perspective. The algorithm and classification scheme developed can be used to describe the pathway structure in annotated genomes to explore the capabilities of an organism. (C) 2000 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据