4.6 Article

High-efficiency transparent organic light-emitting devices

期刊

APPLIED PHYSICS LETTERS
卷 76, 期 15, 页码 2128-2130

出版社

AMER INST PHYSICS
DOI: 10.1063/1.126275

关键词

-

向作者/读者索取更多资源

We demonstrate organic light-emitting devices (OLEDs) employing highly transparent cathodes comprised of 2,9-dimethyl-4,7 diphenyl-1,10-phenanthroline (BCP) and an ultrathin film of Li capped with radio-frequency magnetron-sputtered indium-tin-oxide. The cathodes are incorporated onto a conventional bilayer small-molecule OLED. The operating voltages and the total device external quantum efficiencies emitted from the top and substrate surfaces (1.0 +/- 0.05)% are comparable to the best conventional undoped OLEDs employing thick metallic cathodes. The device characteristics are independent of the position of Li within the compound cathode, suggesting that Li readily diffuses through BCP to enhance electron injection. An increase of a factor similar to 3.5 in the external quantum efficiency is observed compared to devices containing no Li. These results suggest that Li donates electrons to the BCP, increasing its conductivity to the point that band bending occurs to aid in the injection of charge. (C) 2000 American Institute of Physics. [S0003-6951(00)05015-4].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据