4.6 Review

Chalcone-analogue dyes emitting in the near-infrared (NIR): Influence of donor-acceptor substitution and cation complexation on their spectroscopic properties and X-ray structure

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 104, 期 14, 页码 3087-3109

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp994269k

关键词

-

向作者/读者索取更多资源

The photophysical properties of several newly synthesized 1-benzothiazole-3-(4-donor)-phenyl-substituted prop-2-en-1-ones (substituted chalcones) are studied as a function of solvent polarity, temperature, and metal ion by employing steady-state and time-resolved spectroscopy. To investigate the effect of bulkiness and donor strength of the anilino moiety on the spectroscopic properties of these dyes, the spectroscopic behavior of the 4-N-dimethylamino (DMA), the 4-N-tetraoxa-monoaza-15-crown-5 (A15C5), and the 4-N-tetrathiamonoaza-15-crown-5 (AT(4)15C5) derivatives as well as the 3-julolidino (Jul) analogue is compared. Absorption and fluorescence measurements reveal that the strength of the intramolecular charge transfer (ICT) process increases on the order of AT(4)15C5 < A15C5 similar to DMA < Jul. The slight but significant differences between the two crowned dyes are well-supported by the results of the X-ray structure analysis, where oxa aza and thia aza crowns show essentially different geometries. For both fluoroionophores, this variation of heteroatom substitution pattern of the receptor induces specific cation selectivities. The spectroscopic effects accompanying complexation and the different binding sites are studied by steady-state and time-resolved optical spectroscopy as well as NMR spectroscopy. Whereas the probe carrying a tetraoxa monoaza 15-crown-5 receptor shows cation-induced fluorescence enhancement in the presence of alkali and alkaline-earth metal ions, its tetrathia analogue binds selectively to Hg-II, Ag-I, and Cu-II in acetonitrile. Moreover, an increase in fluorescence is observed for the latter probe even upon coordination to the widely known fluorescence quencher Hg-II. Besides receptor complexation, chelate formation in the benzothiazole-carbonyl acceptor part of these intrinsic fluorescent probes is possible, leading to a chromoionophoric signaling behavior in the near-infrared (NIR).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据