4.7 Article

Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water

期刊

MACROMOLECULES
卷 33, 期 8, 页码 3092-3098

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma991087f

关键词

-

向作者/读者索取更多资源

In the presence of a template, desmetryn, commercial porous polypropylene membranes were photografted, using benzophenone as photoinitiator, with the functional monomer 2-acrylamido-2-methylpropanesulfonic acid and the cross-linker N,N'-methylenebis(acrylamide) in water. The influence of the polymerization conditions on membrane properties was studied by solute sorption analyses and membrane permeability measurements as well as electron spectroscopy for chemical analysis, FTIR spectroscopy, BET analysis, and scanning electron microscopy. It was found that molecularly imprinted polymer (MIP) membranes can be obtained which possess group affinity for the template and other triazine herbicides. Remarkably, the MIP membrane affinity for the template in buffer solution can be improved by the presence of salt during photograft copolymerization. This work presents the first successful example for molecular imprinting by in situ polymerization in water and on the surface of a commercially available synthetic polymer. The novel MIP membranes can be used in a fast preconcentration step, solid-phase extraction, by a simple microfiltration for the determination of herbicides in water. The possibility to introduce specific binding sites into porous membranes by surface imprinting polymerization without reducing their high permeabilities opens a general way to design new high-performance affinity membranes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据