4.8 Article

The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90Rsk

期刊

CURRENT BIOLOGY
卷 10, 期 8, 页码 430-438

出版社

CELL PRESS
DOI: 10.1016/S0960-9822(00)00425-5

关键词

-

资金

  1. NIDDK NIH HHS [DK28353] Funding Source: Medline

向作者/读者索取更多资源

Background: During oocyte maturation in Xenopus, progesterone induces entry into meiosis I, and the M phases of meiosis I and II occur consecutively without an intervening S phase. The mitogen-activated protein (MAP) kinase is activated during meiotic entry, and it has been suggested that the linkage of M phases reflects activation of the MAP kinase pathway and the failure to fully degrade cyclin B during anaphase I. To analyze the function of the MAP kinase pathway in oocyte maturation, we used U0126, a potent inhibitor of MAP kinase kinase, and a constitutively active mutant of the protein kinase p90(Rsk), a MAP kinase target. Results: Even with complete inhibition of the MAP kinase pathway by U0126, up to 90% of oocytes were able to enter meiosis I after progesterone treatment, most likely through activation of the phosphatase Cdc25C by the polo-like kinase Plx1. Subsequently, however, U0126-treated oocytes failed to form metaphase I spindles, failed to reaccumulate cyclin B to a high level and failed to hyperphosphorylate Cdc27, a component of the anaphase-promoting complex (APC) that controls cyclin B degradation. Such oocytes entered S phase rather than meiosis II. U0126-treated oocytes expressing a constitutively active form of p90(Rsk) were able to reaccumulate cyclin B, hyperphosphorylate Cdc27 and form metaphase spindles in the absence of detectable MAP kinase activity. Conclusions: The MAP kinase pathway is not essential for entry into meiosis I in Xenopus but is required during the onset of meiosis II to suppress entry into S phase, to regulate the APC so as to support cyclin B accumulation, and to support spindle formation. Moreover, one substrate of MAP kinase, p90(Rsk), is sufficient to mediate these effects during oocyte maturation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据