4.6 Article

Low-energy electron-beam patterning of amine-functionalized self-assembled monolayers

期刊

APPLIED PHYSICS LETTERS
卷 76, 期 17, 页码 2466-2468

出版社

AMER INST PHYSICS
DOI: 10.1063/1.126378

关键词

-

向作者/读者索取更多资源

Patterned amine-functionalized self-assembled monolayers have potential as a template for the deposition and patterning of a wide variety of materials on silicon surfaces, including biomolecules. Results are presented here for low-energy electron-beam patterning of 2-aminopropyltriethoxysilane and (aminoethylaminomethyl)phenethyltrimethoxysilane self-assembled monolayers on silicon substrates. On these ultrathin (1-2 nm) monolayers, lower electron beam energies (< 5 keV) produce higher resolution patterns than high-energy beams. Auger electron spectroscopy indicates that low-energy electron exposure primarily damages the amine groups. At 1 keV, a dose of 40 mu C/cm(2) is required to make the patterns observable by lateral force microscopy. Features as small as 80 nm were exposed at 2 keV on these monolayers. After exposure, palladium colloids and aldehyde- and protein-coated polystyrene fluorescent spheres adhered only to unexposed areas of the monolayers. (C) 2000 American Institute of Physics. [S0003-6951(00)02517-1].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据