4.6 Article

A novel activation mechanism of caspase-activated DNase from Drosophila melanogaster

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 275, 期 17, 页码 12978-12986

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.275.17.12978

关键词

-

向作者/读者索取更多资源

Caspase activated DNase (CAD) is an enzyme that cleaves chromosomal DNA in apoptotic cells. Here, we identified a DNase in Drosophila Schneider cells that can be activated by caspase 3, and purified it as a complex of two subunits (p32 and p20). Using primers based on the amino acid sequence of the purified proteins, a cDNA coding for Drosophila CAD (dCAD) was cloned. The polypeptide encoded by the cDNA contained 450 amino acids with a calculated M-r of 52,057, and showed significant homology with human and mouse CAD (22% identity). Mammalian CADs carry a nuclear localization signal at the C terminus. In contrast, dCAD lacked the corresponding sequence, and the purified dCAD did not cause DNA fragmentation in nuclei in a cell-free system. When dCAD was co-expressed in COS cells with Drosophila inhibitor of CAD (dICAD), a 52-kDa dCAD was produced as a heterotetrameric complex with dICAD. When the complex was treated with human caspase 3 or Drosophila caspase (drICE), the dICAD was cleaved, and released from dCAD. In addition, dCAD was also cleaved by these caspases, and behaved as a (p32)(2)(p20)(2) complex in gel filtration. When a Drosophila neuronal cell line was induced to apoptosis by treatment with a kinase inhibitor, both dCAD and dICAD were cleaved. These results indicated that unlike mammalian CAD, Drosophila CAD must be cleaved by caspases to be activated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据