4.4 Article

Minimal structural and glycosylation requirements for ST6Gal I activity and trafficking

期刊

GLYCOBIOLOGY
卷 10, 期 5, 页码 531-538

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/glycob/10.5.531

关键词

glycosylation; ST6Gal; transport; activity

资金

  1. NIGMS NIH HHS [GM48134] Funding Source: Medline

向作者/读者索取更多资源

The influence of N-linked glycosylation on the activity and trafficking of membrane associated and soluble forms of the STtyr isoform of the ST6Gal I has been evaluated. We have demonstrated that the enzyme is glycosylated on Asn 146 and Asn 158 and that glycosylation is not required for the endoplasmic reticulum to Golgi transport of the membrane-associated form of the STtyr isoform. In addition, N-linked glycosylation may stabilize the protein but is not absolutely required for catalytic activity in vivo. In contrast, soluble forms of the protein consisting of amino acids 64-403, 89-403, and 97-403 are efficiently secreted and active in their fully glycosylated forms, but retained in the endoplasmic reticulum and inactive in their unglycosylated forms. These results suggest that membrane associated and soluble forms of the STtyr protein have different requirements for N-linked glycosylation. Elimination of the oligosaccharide attached to Asn 158 in the full length STtyr single and double glycosylation mutants generates proteins that are not cleaved and secreted but stably localized in the Golgi, like the STcys isoform of the ST6Gal I. This stable Golgi localization is correlated with the observation that these two mutants are active in in vivo assays but inactive in in vitro assays of membrane lysates. We predict that removal of N-linked oligosaccharides leads to an increased ability of the STtyr protein to self-associate or oligomerize which subsequently allows more stable retention in the Golgi and increased aggregation and inactivity when membranes are lysed in the in vitro activity assays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据