4.7 Article

Evaluation of the In Vitro Cytotoxicity of Cross-Linked Biomaterials

期刊

BIOMACROMOLECULES
卷 14, 期 5, 页码 1321-1329

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm301962f

关键词

-

资金

  1. National Institutes of Health [R01-DE013740]
  2. Howard Hughes Medical Institute award
  3. Maryland Technology Enterprise Institute (Mtech) ASPIRE program
  4. Food and Drug Administration Center of Excellence in Regulatory Science and Innovation (CERSI) grant

向作者/读者索取更多资源

This study evaluated the in vitro cytotoxicity of poly(propylene fumarate) (PPF). PPF is an aliphatic biodegradable polymer that has been well characterized for use in bone tissue engineering scaffolds. Four different cell types, human mesenchymal stem cells (hMSC), fibroblasts (L929), preosteoblasts (MC3T3), and canine mesenchymal stem cells (cMSC), were used to evaluate the cytotoxicity of PPF. These cell types represent the tissues that PPF would interact with in vivo as a bone tissue scaffold. The sol fraction of the PPF films was measured and then utilized to estimate cross-linking density. Cytotoxicity was evaluated using XTT assay and fluorescence imaging. Results showed that PPF supported similar cell metabolic activities of hMSC, L929, MC3T3, and cMSC compared to the noncytotoxic control, high-density polyethylene (HDPE) and were statistically different than those cultured with the cytotoxic control, a polyurethane film containing 0.1% zinc diethyldithiocarbamate (ZCF). Results showed differing cellular responses to ZCF, the cytotoxic control. The L929 cells had the lowest cell metabolic activity levels after exposure to ZCF compared to the cell metabolic activity levels of the MC3T3, hMSC, or cMSC cells. Qualitative verification of the results using fluorescence imaging demonstrated no change in cell morphology, vacuolization, or detachment when cultured with PPF compared to HDPE or blank media cultures. Overall, the cytotoxicity response of the cells to PPF was demonstrated to be similar to the cytotoxic response of cells to known noncytotoxic materials (HDPE).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据