4.5 Article

Involvement of NRAMP1 from Arabidopsis thaliana in iron transport

期刊

BIOCHEMICAL JOURNAL
卷 347, 期 -, 页码 749-755

出版社

PORTLAND PRESS
DOI: 10.1042/0264-6021:3470749

关键词

iron deficiency; iron toxicity; Nramp; plant; transport

向作者/读者索取更多资源

Nramp genes code for a widely distributed class of proteins involved in a variety of processes, ranging from the control of susceptibility to bacterial infection in mammalian cells and taste behaviour in Drosophila to manganese uptake in yeast. Some of the NRAMP proteins in mammals and in yeast are capable of transporting metal ions, including iron. In plants, iron transport was shown to require a reduction/Fe(II) transport system. In Arabidopsis thaliana this process involves the IRT1 and Fro2 genes. Here we report the sequence of five NRAMP proteins from A. thaliana. Sequence comparison suggests that there are two classes of NRAMP proteins in plants: A. thaliana (At) NRAMP1 and Oriza sativa (Os) NRAMP1 and 3 (two rice isologues) represent one class, and AtNRAMP2-5 and OsNRAMP2 the other. AtNramp1 and OsNramp1 are able to complement the fet3fet4 yeast, mutant defective both in low- and high-affinity iron transports, whereas AtNramp2 and OsNramp2 fail to do so. In addition, AtNramp1 transcript, but not AtNramp2 transcript, accumulates in response to iron deficiency in roots but not in leaves. Finally, overexpression of AtNramp1 in transgenic A. thaliana plants leads to an increase in plant resistance to toxic iron concentration. Taken together, these results demonstrate that AtNramp1 participates in the control of iron homoeostasis in plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据