3.8 Article

Phase noise in oscillators: A unifying theory and numerical methods for characterization

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/81.847872

关键词

circuit simulation; Fokker-Planck equations; nonlinear oscillators; oscillator noise; phase noise; stochastic differential equatioons; timing jitter

向作者/读者索取更多资源

Phase noise is a topic of theoretical and practical interest in electronic circuits, as well as in other fields, such as optics. Although progress has been made in understanding the phenomenon, there still remain significant gaps, both in its fundamental theory and in numerical techniques for its characterization. In this paper, we develop a solid foundation for phase noise that is valid for any oscillator, regardless of operating mechanism. We establish novel results about the dynamics of stable nonlinear oscillators in the presence of perturbations, both deterministic and random. We obtain an exact nonlinear equation for phase error, which we solve without approximations for random perturbations. This leads us to a precise characterization of timing jitter and spectral dispersion, for computing which we develop efficient numerical methods. We demonstrate our techniques on a variety of practical electrical oscillators and obtain good matches with measurements, even at frequencies close to the carrier, where previous techniques break down. Our methods are more than three orders of magnitude faster than the brute-force Monte Carlo approach, which is the only previously available technique that can predict phase noise correctly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据