4.7 Article

Graphene-Based Anticancer Nanosystem and Its Biosafety Evaluation Using a Zebrafish Model

期刊

BIOMACROMOLECULES
卷 14, 期 2, 页码 358-366

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm3015297

关键词

-

资金

  1. National Key Basic Research Program of China [2011CB606202, 2009CB930301]
  2. National Natural Science Foundation of China [21174110]

向作者/读者索取更多资源

In this paper, a facile strategy to develop graphene-based delivery nanosystems for effective drug loading and sustained drug release was proposed and validated. Specifically, biocompatible naphthalene-terminated PEG (NP) and anticancer drugs (curcumin or doxorubicin (DOX)) were simultaneously integrated onto oxidized graphene (GO), leading to self-assembled, nanosized complexes. It was found that the oxidation degree of GO had a significant impact on the drug-loading efficiency and the structural stability of nanosystems. Interestingly, the nanoassemblies resulted in more effective cellular entry of DOX in comparison with free DOX or DOX-loaded PEG-polyester micelles at equivalent DOX dose, as demonstrated by confocal microscopy studies. Moreover, the nanoassemblies not only exhibited a sustained drug release pattern without an initial burst release, but also significantly improved the stability of formulations which were resistant to drug leaking even in the presence of strong surfactants such as aromatic sodium benzenesulfonate (SBen) and aliphatic sodium dodecylsulfonate (SDS). In addition, the nanoassemblies without DOX loading showed negligible in vitro cytotoxicity, whereas DOX-loaded counterparts led to considerable toxicity against He La cells. The DOX-mediated cytotoxicity of the graphene-based formulation was around 20 folds lower than that of free DOX, most likely due to the slow DOX release from complexes. A zebrafish model was established to assess the in vivo safety profile of curcumin-loaded nanosystems. The results showed they were able to excrete from the zebrafish body rapidly and had nearly no influence on the zebrafish upgrowth. Those encouraging results may prompt the advance of graphene-based nanotherapeutics for biomedical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据