4.7 Article

Tailoring the Dependency between Rigidity and Water Uptake of a Microfabricated Hydrogel with the Conformational Rigidity of a Polymer Cross-Linker

期刊

BIOMACROMOLECULES
卷 14, 期 5, 页码 1361-1369

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm302004v

关键词

-

资金

  1. U.S. Army Telemedicine and Advanced Technology Research Center [W81XWH-08-1-0701]
  2. National Science Foundation [CAREER: DMR-0847253, CBET-0939511]
  3. Division Of Materials Research
  4. Direct For Mathematical & Physical Scien [0847253] Funding Source: National Science Foundation

向作者/读者索取更多资源

Many diverse applications utilize hydrogels as carriers, sensors, and actuators, and these applications rely on the refined control of physical properties of the hydrogel, such as elastic modulus and degree of swelling. Often, hydrogel properties are interdependent; for example, when elastic modulus is increased, degree of swelling is decreased. Controlling these inverse dependencies remains a major barrier for broader hydrogel applications. We hypothesized that polymer cross-linkers with varied chain flexibility would allow us to tune the inverse dependency between the elastic modulus and the degree of swelling of the hydrogels. We examined this hypothesis by using alginate and poly(acrylic acid) (PAA) modified with a controlled number of methacrylic groups as model inflexible and flexible cross-linkers, respectively. Interestingly, the polyacrylamide hydrogel crosslinked by the inflexible alginate methacrylates exhibited less dependency between the degree of swelling and the elastic modulus than the hydrogel cross-linked by flexible PAA methacrylates. This critical role of the cross-linker's inflexibility was related to the difference of the degree of hydrophobic association between polymer cross-linkers, as confirmed with pyrene probes added in pregel solutions. Furthermore, hydrogels cross-linked with alginate methacrylates could tune the projection area of adhered cells by solely altering elastic moduli. In contrast, gels cross-linked with PAA methacrylates failed to modulate the cellular adhesion morphology due to a lower, and smaller, elastic modulus range to be controlled. Overall, the results of this study will significantly advance the controllability of hydrogel properties and greatly enhance the performance of hydrogels in various biological applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据