4.7 Article

Photoinitiated Alkyne-Azide Click and Radical Cross-Linking Reactions for the Patterning of PEG Hydrogels

期刊

BIOMACROMOLECULES
卷 13, 期 3, 页码 889-895

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm201802w

关键词

-

资金

  1. Australian Research Council
  2. CSIRO OCE

向作者/读者索取更多资源

The photolithographical patterning of hydrogels based solely on the surface immobilization and cross-linking of alkyne-functionalized poly(ethylene glycol) (PEG-tetraalkyne) is described. Photogenerated radicals as well as UV absorption by a copper chelating ligand result in the photochemical redox reduction of Cu(II) to Cu(I). This catalyzes the alkyne-azide click reaction to graft the hydrogels onto an azide-functionalized plasma polymer (N3PP) film. The photogenerated radicals were also able to abstract hydrogen atoms from PEG-tetraalkyne to form poly(alpha-alkoxy) radicals. These radicals can initiate cross-linking by addition to the alkynes and intermolecular recombination to form the PEG hydrogels. Spatially controlling the two photoinitiated reactions by UV exposure through a photomask leads to surface patterned hydrogels, with thicknesses that were tunable from tens to several hundreds of nanometers. The patterned PEG hydrogels (ca. 60 mu m wide lines) were capable of resisting the attachment of L929 mouse fibroblast cells, resulting in surfaces with spatially controlled cell attachment. The patterned hydrogel surface also demonstrated spatially resolved chemical functionality, as postsynthetic modification of the hydrogels was successfully carried out with azide-functionalized fluorescent dyes via subsequent alkyne azide click reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据