4.7 Article

Adsorption of Glycinin and β-Conglycinin on Silica and Cellulose: Surface Interactions as a Function of Denaturation, pH, and Electrolytes

期刊

BIOMACROMOLECULES
卷 13, 期 2, 页码 387-396

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm2014153

关键词

-

资金

  1. United Soybean Board (USB) [0426, 0490]
  2. Omni Tech International, Ltd.
  3. Tens Tech, Inc.
  4. Archer Daniels Midland, ADM

向作者/读者索取更多资源

Soybean proteins have found uses in different nonfood applications due to their, interesting properties. We report on the kinetics and extent of adsorption on silica and cellulose surfaces of glycinin and beta-conglycinin, the main proteins present in spy. Quartz crystal microgravimetry (QCM) experiments indicate that soy protein adsorption is strongly affected by changes in the physicochemical environment. The affinity of glycinin and the mass adsorbed on silica and cellulose increases (by ca. 13 and 80%, respectively) with solution ionic strength (as it increases from 0 to 100 mM NaCl) due to screening of electrostatic interactions. In contrast, beta-conglycinin adsorbs on the same substrates to a lower extent and the addition of electrolyte reduces adsorption (by 25 and 57%, respectively). The addition 01 10 mM 2-mercaptoethanol, a denaturing agent, reduces the adsorption of both proteins with a significant effect for glycinin. This observation is explained by the cleavage of disulfide bonds which allows unfolding of the molecules and promotes dissociation into subunits that favors more compact adsorbed layer structures. In addition, adsorption of glycinin onto cellulose decreases with lowering the pH from neutral to pH 3 due to dissociation of the macromolecules, resulting in flatter adsorbed layers. The respective adsorption isotherms fit a Langmuir model and QCM shifts in energy dissipation and frequency reveal multiple step kinetic processes indicative of changes in adlayer structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据