4.7 Article

Mechanism of Polymer-Induced Hemolysis: Nanosized Pore Formation and Osmotic Lysis

期刊

BIOMACROMOLECULES
卷 12, 期 1, 页码 260-268

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm1011739

关键词

-

资金

  1. Department of Biologic and Materials Sciences, University of Michigan School of Dentistry
  2. NSF [DMR-0845592]

向作者/读者索取更多资源

Hemolysis induced by antimicrobial polymers was examined to gain an understanding of the mechanism of polymer toxicity to human cells. A series of cationic amphiphilic methacrylate random copolymers containing primary ammonium groups as the cationic functionality and either butyl or methyl groups as hydrophobic side chains have been prepared by radical copolymerization. Polymers with 0-47 mol % methyl groups in the side chains, relative to the total number of monomeric units, showed antimicrobial activity but no hemolysis. The polymers with 65 mol % methyl groups or 27 mol % butyl groups displayed both antimicrobial and hemolytic activity. These polymers induced leakage of the fluorescent dye calcein trapped in human red blood cells (RBCs), exhibiting the same dose-response curves as for hemoglobin leakage. The percentage of disappeared RBCs after hemolysis increased in direct proportion to the hemolysis percentage, indicating complete release of hemoglobin from fractions of RBCs (all-or-none leakage) rather than partial release from all cells (graded leakage). An osmoprotection assay using poly(ethylene glycol)s (PEGs) as osmolytes indicated that the PEGs with MW > 600 provided protection against hemolysis while low molecular weight PEGs and sucrose had no significant effect on the hemolytic activity of polymers. Accordingly, we propose the mechanism of polymer-induced hemolysis is that the polymers produce nanosized pores in the cell membranes of RBCs, causing an influx of small solutes into the cells and leading to colloid-osmotic lysis

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据