4.7 Article

Folate-Decorated Hybrid Polymeric Nanoparticles for Chemically and Physically Combined Paclitaxel Loading and Targeted Delivery

期刊

BIOMACROMOLECULES
卷 12, 期 1, 页码 228-234

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm101206g

关键词

-

资金

  1. National Natural Science Foundation of China [209 750 82, 207 750 59]
  2. Ministry of Education of the People's Republic of China [NCET-08-0464]
  3. Northwest AF University

向作者/读者索取更多资源

In this study, folate-functionalized hybrid polymeric nanoparticles (NPs) were prepared as carriers of low water solubility paclitaxel for tumor targeting, which were composed of monomethoxy-poly(ethylene glycol)--bpoly(lactide)-paclitaxel (MPEG-PLA-paclitaxel) and D-cc-tocopheryl polyethylene glycol 1000 succinate (TPGS)folate (TPGS-FOL). NPs with various weight ratios of MPEG-PLA-paclitaxel and TPGS-FOL were prepared using a solvent extraction/evaporation method, which can also physically encapsulate paclitaxel. The size, size distribution, surface charge, and morphology of the drug-loaded NPs were characterized using a Zetasizer Nano ZS, scanning electron microscope (SEM), and atomic force microscopy (AFM). The encapsulation and drug loading efficiencies of these polymeric NPs are analyzed using high-performance liquid chromatography (HPLC) at 227 nm. The combination of covalent coupling and physical encapsulation is found to improve the loading of paclitaxel in NPs greatly. The in vitro antitumor activity of the drug-loaded NPs is assessed using a standard method of transcriptional and translational (MTT) assays against HeLa and glioma C6 cells. When the cells were exposed to NPs with :he same paclitaxel weights, cell viability decreases in relation to the increase in TPGS-FOL in drug-loaded NPs. To investigate drug-loaded NP cellular uptake, the fluorescent dye coumarin-6 is utilized as a model drug and enveloped in NPs with 0 or 50% TPGS-FOL. Confocal laser scanning microscopy (CLSM) analysis shows that cellular uptake is lower for coumarin-6-loaded NPs with 0% TPGS-FOL than those with 50% TPGS-FOL. However, no difference for NTH 3T3 cells with normally expressed folate receptors is found. Results from in vitro antitumor activity and cellular uptake assay demonstrate that folic acid promotes drug-loaded NP cellular uptake through folate receptor-mediated endocytosis (RME). All of these results demonstrate that folate-decorated hybrid polymeric NPs are potential carriers for tumor-targeted drug delivery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据