4.7 Article

Conceptual Approach to Renewable Barrier Film Design Based on Wood Hydrolysate

期刊

BIOMACROMOLECULES
卷 12, 期 4, 页码 1355-1362

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm200128s

关键词

-

资金

  1. VINNOVA [2009-04311]
  2. Tetra Pak Packaging Solutions AB

向作者/读者索取更多资源

Biomass is converted to oxygen barriers through a conceptually unconventional approach involving the preservation of the biomass native interactions and macromolecular components and enhancing the effect by created interactions With a co-component. A combined calculation/assessment model is elaborated to understand, quantify, and predict which compositions that provide an intermolecular affinity high enough to mediate the molecular packing needed to create a functioning barrier. The biomass used is a wood hydrolysate, a polysaccharide-rich but not highly refined mixture where a fair amount of the native intermolecular and intramolecular hernicelluloses-lignin interactions are purposely preserved, resulting in barriers with very low oxygen permeabilities (OP) both at 50 and 80% relative humidity and, considerably lower OPs than coatings based on the corresponding highly purified spruce hemicellulose, O-acetyl galactoglucomannan (AcGGM). The component interactions and, mutual affinities effectively mediate an immobilization of the chain segments in a dense disordered structure, modeled through the Hansen's solubility parameter concept and quantified on the nanolength scale by positron annihilation lifetime spectrum (PALS).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据