4.7 Article

Insoluble and Flexible Silk Films Containing Glycerol

期刊

BIOMACROMOLECULES
卷 11, 期 1, 页码 143-150

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm900993n

关键词

-

向作者/读者索取更多资源

We directly prepared insoluble silk films by blending with glycerol and avoiding the use of organic solvents. The ability to blend a plasticizer like glycerol with a hydrophobic protein like silk and achieve stable material systems above a critical threshold of glycerol is in important new finding with importance for green chemistry approaches to new and more flexible silk-based biomaterials. The aqueous solubility, biocompatibility, and well-documented use of glycerol as a plasticizer with other biopolymers prompted its inclusion in silk fibroin solutions to assess impact on silk film behavior. Processing was performed in water rather than organic solvents to enhance the potential biocompatibility of these biomaterials. The films exhibited modified morphologies that could be controlled on the basis of the blend composition and also exhibited altered mechanical properties, such as improved elongation at break, when compared with pure silk fibroin films. Mechanistically, glycerol appears to replace water in silk fibroin chain hydration, resulting in the initial stabilization of helical structures in the films, as opposed to random coil or P-sheet structures. The use of glycerol in combination with silk fibroin in materials processing expands the functional features attainable with this fibrous protein, and in particular, in the formation of more flexible films with potential utility in a range of biomaterial and device applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据