4.7 Article

Functional Assessment of Cross-Linked Porous Gelatin Hydrogels for Bioengineered Cell Sheet Carriers

期刊

BIOMACROMOLECULES
卷 11, 期 5, 页码 1387-1397

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm100213f

关键词

-

资金

  1. National Science Council of Republic of China [NSC98-2221-E-182-012]
  2. Chang Gang Memorial Hospital [CMRPD160393]

向作者/读者索取更多资源

An efficient carrier for corneal endothelial cell therapy should deliver and retain the cell sheet transplants at the site of injury without causing adverse effects. Here we introduced a simple stirring process combined with freeze-drying (SFD1) method for the development of gelatin hydrogels with enlarged pore structure that can improve the aqueous humor circulation. Samples fabricated by air-drying (AD) or freeze-drying method were used for comparison. After cross-linking with 1 mM 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC), the discs were investigated to assess their functionality. The simultaneous presence of ice crystals and gas bubbles resulted in large pore size (461 +/- 85 mu m) and high porosity (48.0 +/- 1.9%) of SFD1 carriers. Among all of the samples studied, the SFD1 hydrogels showed the most appropriate swelling characteristics without squeezing effect on the anterior segment tissues of the eye. The enlarged pore structure also allowed carriers to contain the highest fraction of mobile water and exhibit the lowest resistance to the glucose permeation. In comparison with AD samples, the SFD1 materials had better cytocompatibility and biocompatibility and more effectively prevented a drastic change of intraocular pressure. Rheological measurements showed that the SFD1 hydrogels behaved like an elastic solid and had a tough (rigid and deformable) texture. As a temporary supporter, the biodegradable gelatin hydrogel could facilitate cell sheet transfer and avoid long-term residence of foreign carriers in the body. Our findings suggest that the gelatin discs with enlarged pore structure have potential as cell sheet carriers for intraocular delivery and corneal tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据