4.7 Article

Autocatalytic Equation Describing the Change in Molecular Weight during Hydrolytic Degradation of Aliphatic Polyesters

期刊

BIOMACROMOLECULES
卷 11, 期 4, 页码 1118-1124

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm100125b

关键词

-

资金

  1. Schering-Plough

向作者/读者索取更多资源

The autocatalytic equation derived in this study describes and even predicts the evolution of the number average molecular weight of aliphatic polyesters upon hydrolytic degradation. The main reaction in the degradation of aliphatic polyesters is autocatalytic hydrolysis of ester bonds, which causes the molecular weight to decrease. During hydrolysis of the ester bonds in the main chain of the polyester, the chains are cleaved and the end group concentrations will rise. The fundamentals of this equation are based on that principle. To validate the derived equation, the hydrolytic degradation of poly(4-methylcaprolactone), poly(epsilon-caprolactone), poly(D,L-lactide), and two different poly(D,L-lactide-co-glycolide) copolymers was monitored after immersion in a PBS buffer (pH = 7.4) at 37 degrees C. The number average molecular weight, mass loss, and crystallinity were determined after different time intervals. The experimental results confirm that hydrolytic degradation of aliphatic polyesters is a bulk erosion process. When comparing the M-n, calculated with the new autocatalytic equation, with the experimental results, it was found that the new model can predict the decrease of the M-n upon hydrolytic degradation for semicrystalline and amorphous polymers, as well as for copolymers, without the need for complicated mathematics and excessive input parameters. This is a major improvement with respect to earlier proposed models in literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据