4.6 Article

High resolution computed tomography and MRI for monitoring lung tumor growth in mice undergoing radioimmunotherapy: Correlation with histology

期刊

MEDICAL PHYSICS
卷 27, 期 5, 页码 1101-1107

出版社

AMER INST PHYSICS
DOI: 10.1118/1.598974

关键词

lung tumors; mice; computed tomography; radioimmunotherapy; histology

向作者/读者索取更多资源

A model lung tumor system has been developed in mice for the evaluation of vascular targeted radioimmunotherapy. In this model, EMT-6 mammary carcinoma tumors growing in the lung are treated with Bi-213, an alpha particle emitter, which is targeted to lung blood vessels using a monoclonal antibody. Smaller tumors (< 100 mu m in diameter) are cured, but larger tumors undergo a period of regression and then regrow and ultimately prove lethal. The goal of this work was to determine if external imaging with MRI or CT could be used routinely to monitor the growth/regression of lung tumors in live mice. To attempt to evaluate individual tumors in vivo, animals were initially imaged with magnetic resonance imaging (MRI). High resolution MRI images could be obtained only after sacrifice when lungs were not moving. In contrast, high resolution computed tomography (CT) produced evaluable images from anesthetized animals. Serial CT images (up to 5/animal) were collected over a 17 day period of tumor growth and treatment. When tumored animals became moribund, animals were sacrificed and lungs were inflated with fixative, embedded in paraffin, and then sectioned serially to compare the detection of tumors by high resolution CT with detection by histology. CT proved most useful in detecting lung tumors located in the hilar area and least useful in detecting serosal surface and anterior lobe tumor foci. Overall, CT images of live animals revealed tumors in similar to 2/3 of cases detected in histologic serial sections when relatively few tumors were present per lung. Detection of lesions and their resolution post therapy were complicated due to residual hemorrhagic, regressing tumor nodules and the development of lung edema both of which appeared as high density areas in the CT scans. We conclude that the microCT method used could identify some lung tumors as small as 100 mu m in diameter; however, no concrete evaluation of therapy induced regression of the tumors could be made with CT analyses alone. (C) 2000 American Association of Physicists in Medicine. [S0094-2405(00)02505-0].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据