4.7 Article

Effect of Molecular Weight, Crystallinity, and Hydrophobicity on the Acoustic Activation of Polymer-Shelled Ultrasound Contrast Agents

期刊

BIOMACROMOLECULES
卷 10, 期 5, 页码 1025-1031

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm801243u

关键词

-

资金

  1. Dutch ministry of economic affairs [IS042035]

向作者/读者索取更多资源

Polymer-shelled microbubbles are applied as ultrasound contrast agents. To investigate the effect of the polymer on microbubble preparation and acoustic properties, polylactides with systematic variations in molecular weight, crystallinity, and end-group hydrophobicity were used. Polymer-shelled cyclodecane filled capsules were prepared by emulsification, and the cyclodecane was removed by lyophilization to obtain hollow capsules. Complete removal of cyclodecane from the microcapsules was only achieved for short chain (about M-w 6000) crystalline polymers. The pressure threshold for acoustic destruction of the microbubbles was found to increase with molecular weight. Noncrystalline polymers showed a higher threshold for destruction than crystalline polymers. Hydrophobically modified short chain crystalline polymers showed the steepest increase in acoustic destruction after the threshold as a function of the applied pressure, which is a favorable characteristic for ultrasound mediated drug delivery. Microcapsules made with such polymers had an inhomogeneous surface including pores through which cyclodecane was lyophilized efficiently.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据