4.7 Article

Recombinant Silk-Elastinlike Protein Polymer Displays Elasticity Comparable to Elastin

期刊

BIOMACROMOLECULES
卷 10, 期 11, 页码 3028-3036

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm900651g

关键词

-

资金

  1. NSF [CMMI 0700323]

向作者/读者索取更多资源

We evaluated the mechanical properties of the genetically engineered, recombinant silk-elastinlike protein copolymer, SELP-47K. In tensile stress-strain analysis, methanol-treated non-cross-linked SELP-47K films exceeded die properties of native aortic elastin, attaining an ultimate tensile strength of 2.5 +/- 0.4 MPa, an elastic modulus of 1.7 +/- 0.4 MPa, an extensibility of 190 +/- 60%, and a resilience of 86 +/- 4% after 10 cycles of mechanical preconditioning. Stress-relaxation and creep analysis showed that films substantially maintained their elastic properties under sustained deformation. Chemical cross-linking of SELP-47K films doubled the elastic modulus and ultimate tensile strength and enhanced the extensibility and resilience. The underlying conformational and microstructural features of the films were examined. Raman spectroscopy revealed that the silklike blocks of SELP-47K existed in antiparallel beta-sheet crystals in the films, likely responsible for the robust physical cross-links. Scanning electron microscopy (SEM) revealed that the various processing treatments and the mechanical deformation of the films induced changes in their surface microstructure consistent with the coagulation and alignment of polymer chains. These results demonstrate that films with excellent elasticity, comparable to native aortic elastin, are obtainable from SELP-47K, a protein copolymer combining both silk- and elastin-derived sequences in a single polymer chain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据