4.7 Article

Wet-Spinning of Recombinant Silk-Elastin-Like Protein Polymer Fibers with High Tensile Strength and High Deformability

期刊

BIOMACROMOLECULES
卷 10, 期 3, 页码 602-608

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm801296r

关键词

-

资金

  1. NSF [CMMI-0700323]

向作者/读者索取更多资源

A recombinant silk-elastin-like protein copolymer SELP-47K containing tandemly repeated amino acid sequence blocks from silk, GAGAGS, and elastin, GVGVP, was fabricated into microdiameter fibers using a wet-spinning technique. Raman spectral analysis revealed the formation of antiparallel beta-sheet crystals of the silk-like blocks. Dry SELP-47K fibers display the dependence of mechanical properties such as Young's modulus on fiber diameter, suggesting more oriented and crystallized molecular chains in small-diameter fibers. Additionally, a brittle fracture mode was identified for dry fibers by SEM analysis of fracture surfaces. Hydration dramatically influenced the mechanical behavior of SELP-47K fibers. In contrast to the high tensile strength and limited strains to failure of dry fibers, fully hydrated SELP-47K fibers possessed strains to failure as high as 700%. Furthermore, upon chemical cross-linking, a tensile mechanical strength up to 20 MPa was achieved in hydrated fibers without compromising their high deformability. By combing the silk- and elastin-derived sequences into a single SELP-47K protein polymer, we demonstrated that protein fibers with high tensile strength and high deformability can be fabricated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据