4.7 Article

Low-Fouling Poly(N-vinyl pyrrolidone) Capsules with Engineered Degradable Properties

期刊

BIOMACROMOLECULES
卷 10, 期 10, 页码 2839-2846

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm900673m

关键词

-

资金

  1. Australian Research Council under the Federation Fellowship
  2. Rede Galega de Nanomedicina (Xunta de Galicia, Spain)
  3. Consolider-Ingenio Nanobiomed (Spanish MEC, Spain)

向作者/读者索取更多资源

We report the assembly of low-fouling polymer capsules with engineered deconstruction properties by using a combination of layer-by-layer (LbL) assembly and click chemistry. Preformed, hydrogen-bonded multilayers of alkyne-functionalized poly(N-vinyl pyrrolidone) (PVPONAlk) and poly(methacrylic acid) (PMA) assembled at pH 4 on silica particles were cross-linked with a bisazide linker (containing a disulfide link) through alkyne-azide click chemistry. Following dissolution of the silica template particles, and altering the solution pH to 7.2 to disrupt hydrogen bonding between PVPONAlk and PMA to effect removal of PMA, stable, cross-linked PVPON capsules were obtained. The presence of the disulfide bond in the bisazide linker endowed the PVPON capsules with degradable characteristics under model intracellular conditions. The capsules deconstructed within 4 h in the presence of 5 mM glutathione. The cross-linked PVPONAlk multilayers (assembled on silica particles) were low-fouling to a range of proteins, including fibrinogen, lysozyme, immunoglobulin G, and bovine serum albumin. Further, MTT assays showed that the PVPON capsules had no effect on the proliferation of cells from a human colon cancer cell line (LIM1899), indicating negligible cytotoxicity toward the LIM1899 cells. The low-fouling, degradable, and low cytotoxicity characteristics of the PVPON capsules makes them attractive as a platform for the development of advanced therapeutic delivery systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据