4.7 Article

Nonfouling Behavior of Polycarboxybetaine-Grafted Surfaces: Structural and Environmental Effects

期刊

BIOMACROMOLECULES
卷 9, 期 10, 页码 2686-2692

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm800407r

关键词

-

资金

  1. Defense Threat Reduction Agency [HDTRA1-07-1-0033]
  2. National Science Foundation [DMR-0705907]

向作者/读者索取更多资源

Zwitterionic carboxybetaine (CB) has unique dual functionality for ligand immobilization on a nonfouling background. The properties of CB groups depend on their spacer groups between the positive quaternary amine groups and the negative carboxyl groups and environmental factors (e.g., ionic strengths and pH values). In this work, five polycarboxybetaines were prepared, including one polycarboxybetaine methacrylate (polyCBMA) and four polycarboxybetaine acrylamides (polyCBAAs) with different spacer groups. The polymers were grafted from a gold surface covered with initiators using surface-initiated atom transfer radical polymerization. Fibrinogen adsorption was measured as a function of ionic strengths and pH values using surface plasmon resonance sensors. The responsive protein adsorption on four polyCBAAs was mapped out. Results show that most of these surfaces exhibit high protein resistance in a wide range of ionic strengths and are more effective than zwitterionic self-assembled monolayers. Although protein adsorption tends to increase at low ionic strength and low pH value, it is still very low for polycarboxylbetaines with a methylene, an ethylene, or a propylene spacer group but is more evident for polyCBAA with a longer spacer group (i.e., a pentene group). The response to ionic strengths and pH values can be attributed to the antipolyelectrolyte and protonation/deprotonation properties of polycarboxybetaines, respectively. Both of these properties are related to the spacer groups of CBs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据