4.7 Article

Poly(ether-ester) Conjugates with Enhanced Degradation

期刊

BIOMACROMOLECULES
卷 9, 期 10, 页码 2954-2962

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm8007499

关键词

-

资金

  1. Marie Curie Action RTN Biocatalytic Approach to Material Design BIOMADE [MRTN-CT-2004-505147]
  2. BMBF [13N8888]

向作者/读者索取更多资源

When a linear or a four arm star-shaped polyglycidol is used as macroinitiator, densely grafted poly(glycidol-graft-epsilon-caprolactone) and poly(glycidol-graft-L-lactide) and loosely grafted poly [(glycidol-graft-epsilon-caprolactone)co-glycidol] copolymers have been synthesized by chemical or, in the latter case, by enzymatic catalyzed ring-opening polymerization of epsilon-caprolactone and L-lactide. The well-defined copolymers possess similar molecular weights, but differ in their architecture, microstructure and chemical composition. The hydrolytic degradation behavior was studied in a phosphate buffer solution at pH 7.4 and 37 degrees C for up to 90 days. After different time periods, the mass loss was determined and the degraded copolymers were analyzed by means of NMR, size exclusion chromatography, and scanning electron microscopy. Compared to linear poly(epsilon-caprolactone), poly [(glycidol-graft-epsilon-caprolactone)-co-glycidol] shows a change of the degradation mechanism and a tremendous enhancement of polymer degradation. As this effect is attributed to the high concentration of hydroxy groups at the polyglycidol backbone, this work points out a new possibility to tailor the degradation profiles of polyesters by the introduction of functionality into the polymeric material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据