4.7 Article

Structure and Molecular Mobility of Soy Glycinin in the Solid State

期刊

BIOMACROMOLECULES
卷 9, 期 10, 页码 2937-2946

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm800721d

关键词

-

向作者/读者索取更多资源

We report a multitechnique study of structural organization and molecular mobility for soy glycinin at a low moisture content (<30% w/w) and relate these to its glass-to-rubber transition. Small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy are used to probe structure and mobility on different length and time scales. NMR (similar to 10(-6) to 10(-3) s) reveals transitions at a higher moisture content (> 17%) than DSC or SAXS, which sample for much longer times (similar to 10 to 10(3) s) and where changes are detected at > 13% water content at 20 degrees C. The mobility transitions are accompanied by small changes in unit-cell parameters and IR band intensities and are associated with the enhanced motion of the polypeptide backbone. This study shows how characteristic features of the ordered regions of the protein (probed by SAXS and FTIR) and mobile segments (probed by NMR and DSC) can be separately monitored and integrated within a mobility transformation framework.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据