4.7 Article

Melatonin-induced increased activity of the respiratory chain complexes I and IV can prevent mitochondrial damage induced by ruthenium red in vivo

期刊

JOURNAL OF PINEAL RESEARCH
卷 28, 期 4, 页码 242-248

出版社

WILEY
DOI: 10.1034/j.1600-079X.2000.280407.x

关键词

cytotoxicity; electron transport chain; melatonin; mitochondria; oxidative stress; ruthenium red

向作者/读者索取更多资源

Melatonin displays antioxidant and free radical scavenger properties. Due to its ability with which it enters cells, these protective effects are manifested in all subcellular compartments. Recent studies suggest a role for melatonin in mitochondrial metabolism. To study the effects of melatonin on this organelle we used ruthenium red to induce mitochondrial damage and oxidative stress. The results show that melatonin (10 mg/kg i.p.) can increase the activity of the mitochondrial respiratory complexes I and IV after its administration in vivo in a time-dependent manner; these changes correlate well with the half-life of the indole in plasma. Melatonin administration also prevented the decrease in the activity of complexes I and IV due to ruthenium red (60 mu g/kg i.p.) administration. At this dose, ruthenium red did not induce lipid peroxidation but it significantly reduced the activity of the antioxidative enzyme glutathione peroxidase, an effect also counteracted by melatonin. These results suggest that melatonin modulates mitochondrial respiratory activity, an effect that may account for some of the protective properties of the indoleamine. The mitochondria-modulating role of melatonin may be of physiological significance since it seems that the indoleamine is concentrated into normal mitochondria. The data also support a pharmacological use of melatonin in drug-induced mitochondrial damage in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据