4.7 Article

Effect of filler content and size on transport properties of water vapor in PLA/calcium sulfate composites

期刊

BIOMACROMOLECULES
卷 9, 期 3, 页码 984-990

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm700568n

关键词

-

向作者/读者索取更多资源

Starting from calcium sulfate (gypsum) as fermentation byproduct of lactic acid production process, high-performance composites have been produced by melt-blending polylactide (PLA) and beta-anhydrite II (AII) filler, i.e., calcium sulfate hemihydrate previously dried at 500 degrees C. Characterized by attractive properties due to good filler dispersion throughout the polyester matrix and favorable interactions between components, these composites are interesting for potential use as biodegradable rigid packaging. The effect of filler content and mean particle diameter on the barrier properties such as sorption and diffusion to water vapor has been examined and compared to unfilled PLA. Even without additional treatments, the presence of the filler introduced constraints on molecular mobility in the permeable phase of amorphous PLA and the amount of solvent absorbed appears lower in the highly filled composites. Surprisingly, for PLA-30% All compositions, by addition of filler characterized by high mean particle diameter (e.g., 43 mu m) the thermodynamic diffusion parameter, D-0, decreased up to 2 orders of magnitude. The dimension of filler particles and their percentage in the continuous polymeric phase seem to be the most important parameters that determine the barrier properties of the PLA-AII composites to water vapor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据