3.8 Article

Characterization of three cloned and expressed 13-hydroperoxide lyase isoenzymes from alfalfa with unusual N-terminal sequences and different enzyme kinetics

期刊

EUROPEAN JOURNAL OF BIOCHEMISTRY
卷 267, 期 9, 页码 2473-2482

出版社

BLACKWELL SCIENCE LTD
DOI: 10.1046/j.1432-1327.2000.01283.x

关键词

cytochrome P450; hydroperoxide lyase; lipoxygenase pathway; Medicago sativa; natural flavors

向作者/读者索取更多资源

Three full-length cDNAs from alfalfa seedlings coding for hydroperoxide lyases were cloned and expressed in Escherichia coli and characterized as cytochrome P450 enzymes. The isoenzymes were specific for 13-hydroperoxy linoleic and linolenic acids and did not use the 9-hydroperoxy isomers as substrates. Because alfalfa contains both specificities, this indicates the presence of two different types of hydroperoxide lyases, each specific for one kind of substrate. The enzymes contain 480 amino acids (54 kDa) and contain an unusual, nonplastidic N-terminal sequence of 22 amino acids, which strongly reduces the enzyme activity. The only known presequence of a hydroperoxide lyase (from Arabidopsis thaliana) was considered to be a transit sequence. The reduced enzyme activity, however, indicates that the hydroperoxide lyases with N-terminal extensions could be pro-enzymes. This hypothesis is supported by the fast release of hydroperoxide lyase products by plants upon wounding. One of the isoenzymes showed a strongly decreased V-max and K-m compared to the other two. Because this is probably due to the substitution of Ser377 by Phe; the residue at position 377 seems to be important. This is the first time that sufficient quantities of hydroperoxide lyase have been obtained for characterization studies, by circumventing difficult purification procedures and degradation of the enzyme. The high expression level, easy purification, good stability and high specificity make these cloned hydroperoxide lyases excellent tools to study the reaction mechanism and structure. We postulate an integrated reaction mechanism, based on the known chemistry of cytochrome P450 enzymes. This is the first mechanism that unifies all observed features of hydroperoxide lyases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据