4.6 Article

A global neutralization resistance phenotype of human immunodeficiency virus type 1 is determined by distinct mechanisms mediating enhanced infectivity and conformational change of the envelope complex

期刊

JOURNAL OF VIROLOGY
卷 74, 期 9, 页码 4183-4191

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.74.9.4183-4191.2000

关键词

-

类别

资金

  1. NHLBI NIH HHS [HL AI/HL 36085, R01 HL059725] Funding Source: Medline
  2. NIAID NIH HHS [R01 AI036085, AI32424, R01 AI037438, R01-AI37438] Funding Source: Medline

向作者/读者索取更多资源

We have described previously genetic characterization of neutralization-resistant, high-infectivity, and neutralization-sensitive, low-infectivity mutants of human immunodeficiency virus type 1 (HIV-1) MN envelope, The distinct phenotypes of these clones are attributable to six mutations affecting functional interactions between the gp120 C4-V5 regions and the gp41 leucine zipper. In the present study we examined mechanisms responsible for the phenotypic differences between these envelopes using neutralization and immunofluorescence assays (IFA), Most monoclonal antibodies (MAbs) tested against gp120 epitopes (V3, CD4 binding site, and CD4-induced) were 20 to 100 times more efficient at neutralizing pseudovirus expressing sensitive rather than resistant envelope. By IFA cells expressing neutralization sensitive envelope bound MAbs to gp120 epitopes more, but gp41 epitopes less, than neutralization-resistant envelope. This binding difference appeared to reflect conformational change, since it did not correlate with the level of protein expression or gp120-gp41 dissociation. This conformational change was mostly attributable to one mutation, L544P, which contributes to neutralization resistance but not to infectivity enhancement. The V420I mutation, which contributes a major effect to both high infectivity and neutralization resistance, had no apparent effect on conformation. Notably, a conformation-dependent V3 neutralization epitope remained sensitive to neutralization and accessible to binding by MAbs on neutralization-resistant HIV-1 envelope. Sensitivity to sCD4 did not distinguish the clones, suggesting that the phenotypes may be related to post-CD4-binding effects. The results demonstrate that neutralization resistance can be determined by distinguishable effects of mutations, which cause changes in envelope conformation and/or function(s) related to infectivity, A conformation-dependent V3 epitope may be an important target for neutralization of resistant strains of HIV-1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据