3.8 Article

Transition and-chaos in two-dimensional flow past a square cylinder

期刊

JOURNAL OF ENGINEERING MECHANICS-ASCE
卷 126, 期 5, 页码 523-532

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)0733-9399(2000)126:5(523)

关键词

-

向作者/读者索取更多资源

The unsteady wake of a long square cylinder has been numerically analyzed in the present study. Velocity signals at selected locations in the near-wake and the instantaneous forces on the cylinder have been recorded from the numerical model at various Reynolds numbers. These form the basis of investigating the dynamic behavior of the flow system. Results of the present work show the following. Flow past a square cylinder undergoes a sequence of transitions from a steady pattern up to a Reynolds number of 40 to a chaotic one around a Reynolds number of WO. The transition to chaos is manifested through a quasi-periodic route that includes the frequency-locking phenomenon. The quasi-periodicity is seen to set in with two or more Hopf bifurcations. The transition to chaos in the wake of a bluff object is related to the three-dimensionality of the flow In a 2D simulation, this appears in the form of new harmonics in the velocity traces. The quasi-periodic route to chaos has been established through different characterization tools, such as the spectra, autocorrelation function, time-delay reconstruction, and the Poincare section. Chaotic behavior is quantified through the calculation of Lyapunov exponent and fractal dimension.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据