4.4 Article

Concentration dependence of interstitial flow buffering by hyaluronan in synovial joints

期刊

MICROVASCULAR RESEARCH
卷 59, 期 3, 页码 345-353

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/mvre.1999.2231

关键词

hyaluronan; interstitial flow; synovial joints

向作者/读者索取更多资源

Hyaluronan concentration in synovial fluid spans a 20-fold range, from as low as 0.2 mg ml(-1) in synovitis to as high as 4 mg ml(-1) in healthy joints. The aim was to determine the effect of this on fluid drainage from the joint cavity. The study extends the finding of P. J. Coleman, D. Scott, R. M. Mason, and J. R. Levick (1999, J. Physiol. 514, 265-282) that dissolved hyaluronan at 3.6-4.0 mg ml(-1) (the concentration in young human and rabbit joints) causes the opposition to interstitial fluid drainage to increase with pressure. Hyaluronan was infused into rabbit knees at 0, 0.2, 2.0, and 4.0 mg ml(-1) over a range of intraarticular pressures. Hyaluronan at 2 mg ml(-1) (as in healthy elderly joints and some osteoarthritis) greatly reduced drainage rates and generated a flattening (convex) pressure-flow relation, as observed previously with 4 mg ml(-1). Drainage rates were greater at 2 mg ml(-1) than at 4 mg ml(-1) hyaluronan (P < 0.0001, ANOVA, n = 7). The opposition to outflow (pressure required to drive unit outflow) increased with pressure, but less markedly than with 4 mg ml(-1) hyaluronan. Hyaluronan at 0.2 mg ml(-1) reduced outflow by similar to 50% relative to Ringer solution (P < 0.0001, ANOVA, n = 7) but the pressure-flow relation no longer flattened out with increasing pressure, because there was no significant increase in opposition to outflow with pressure. At 0 mg ml(-1) hyaluronan, outflow opposition decreased with pressure. Viscometry showed a marked transition in the hyaluronan state at greater than or equal to 1.35 mg ml(-1), indicating that this is the critical concentration for molecular domain overlap and intermolecular coupling. The results broadly supported the concentration-polarization hypothesis, which predicts significant osmotic buffering of drainage at greater than or equal to 1 mg ml(-1) hyaluronan; at 0.2 mg ml(-1) other factors may predominate. It is inferred that hyaluronan at physiological concentrations can conserve synovial fluid when pressures are raised (e.g., flexion): whereas dilution of hyaluronan, as in severe effusions, can effectively abolish buffering and thus facilitate fluid drainage. (C) 2000 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据