4.4 Article

Enamel thickness and the helicoidal wear plane in modern human mandibular molars

期刊

ARCHIVES OF ORAL BIOLOGY
卷 45, 期 5, 页码 401-409

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0003-9969(00)00007-8

关键词

enamel thickness; helicoid occlusion; molar function; mastication; gradients

向作者/读者索取更多资源

Helicoid occlusion has long been recognized as a feature characterizing the human dentition and has been viewed as an important morphological marker in the transition from Australopitheclus to Homo. The hallmark of helicoidal wear is a buccal wear slope in anterior mandibular molars (and a corresponding lingual slope of wear in anterior maxillary molars) reversing to a flat or lingual-oriented one in posterior mandibular molars. If localized increases in enamel thickness are taken as evidence of an adaptation to increased wear resistance, then data on enamel thickness in unworn molars can be used to assess whether the region of greatest wear changes from anterior to posterior in such a way as to provide evidence for the helicoidal wear plane being a structural feature of the orofacial skeleton. Such a hypothesis was supported in a previous study on enamel thickness in modern human maxillary molars. As maxillary and mandibular precisely interdigitate, it is reasonable to expect that a similar pattern of enamel thickness distribution should be present in mandibular molars. To test this, data on the distribution of enamel thickness across functionally relevant regions of the crown were corrected on a sample of twenty-nine completely unworn mandibular molars. Results suggest that enamel thickness increases slightly posteriorly but no evidence exists for morphological changes along the mandibular molar series of modern humans to follow a trend towards providing additional tooth material in areas under greater wear in accordance with a helicoidal wear model. This suggests that the patterning of enamel thickness must be viewed in conjunction with other features, such as the biomechanical behaviour of molars during occlusion and axial molar angulation, to ascertain the precise anatomical determinants of this unique feature of the human dentition. (C) 2000 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据