4.3 Article

The role of the putative inactivation lid in sodium channel gating current immobilization

期刊

JOURNAL OF GENERAL PHYSIOLOGY
卷 115, 期 5, 页码 609-619

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1085/jgp.115.5.609

关键词

sodium channel; gating charge; inactivation; site-3 toxin; immobilization

资金

  1. NHLBI NIH HHS [HLPO120592, HLR0144630] Funding Source: Medline

向作者/读者索取更多资源

We investigated the contribution of the putative inactivation lid in voltage-gated sodium channels to gating charge immobilization (i.e., the slow return of gating charge during repolarization) by studying a lid-modified mutant of the human heart sodium channel (hH1a) that had the phenylalanine at position 1485 in the isoleucine, phenylalanine, and methionine (IFM) region of the domain III-IV linker mutated to a cysteine (ICM-hH1a). Residual fast inactivation of ICM-hH1a in fused tsA201 cells was abolished by intracellular perfusion with 2.5 mM 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET). The time constants of gating current relaxations in response to step depolarizations and gating charge-voltage relationships were not different between wild-type hH1a and ICM-hH1a(MTSET). The time constant of the development of charge immobilization assayed at - 180 mV after depolarization to 0 mV was similar to the time constant of inactivation of I-Na at 0 mV for hH1a. By 44 ms, 53% of the gating charge during repolarization returned slowly; i.e., became immobilized. In ICM-hH1a(MTSET), immobilization occurred with a similar time course, although only 31% of gating charge upon repolarization (OFF charge) immobilized. After modification of hH1a and ICM-hH1a(MTSET) with Anthopleurin-A toxin, a site-3 peptide toxin that inhibits movement of the domain IV-S4, charge immobilization did not occur for conditioning durations up to 44 ms. OFF charge for both hH1a and ICM-hH1a(MTSET) modified with Anthopleurin-A toxin were similar in time course and in magnitude to the fast component of OFF charge in ICM-hH1a(MTSET) in control. We conclude that movement of domain IV-S4 is the rate-limiting step during repolarization, and it contributes to charge immobilization regardless of whether the inactivation lid is bound. Taken together with previous reports, these data also suggest that S4 in domain III contributes to charge immobilization only after binding of the inactivation lid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据