4.5 Article

Oxygen Regulates Amino Acid Turnover and Carbohydrate Uptake During the Preimplantation Period of Mouse Embryo Development

期刊

BIOLOGY OF REPRODUCTION
卷 87, 期 1, 页码 -

出版社

SOC STUDY REPRODUCTION
DOI: 10.1095/biolreprod.112.100552

关键词

blastocyst; culture; early development; embryo; glucose; in vitro fertilization; metabolism; viability

资金

  1. University of Melbourne
  2. Alfred Nicholas Fellowship

向作者/读者索取更多资源

Oxygen is a powerful regulator of preimplantation embryo development, affecting gene expression, the proteome, and energy metabolism. Even a transient exposure to atmospheric oxygen can have a negative impact on embryo development, which is greatest prior to compaction, and subsequent post-compaction culture at low oxygen cannot alleviate this damage. In spite of this evidence, the majority of human in vitro fertilization is still performed at atmospheric oxygen. One of the physiological parameters shown to be affected by the relative oxygen concentration, carbohydrate metabolism, is linked to the ability of the mammalian embryo to develop in culture and remain viable after transfer. The aim of this study was, therefore, to determine the effect of oxygen concentration on the ability of mouse embryos to utilize both amino acids and carbohydrates both before and after compaction. Metabolomic and fluorometric analysis of embryo culture media revealed that when embryos were exposed to atmospheric oxygen during the cleavage stages, they exhibited significantly greater amino acid utilization and pyruvate uptake than when cultured under 5% oxygen. In contrast, postcompaction embryos cultured in atmospheric oxygen showed significantly lower mean amino acid utilization and glucose uptake. These metabolic changes correlated with developmental compromise because embryos grown in atmospheric oxygen at all stages showed significantly lower blastocyst formation and proliferation. These findings confirm the need to consider both embryo development and metabolism in establishing optimal human embryo growth conditions and prognostic markers of viability, and further highlight the impact of oxygen on such vital parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据