4.5 Article

Spermatogonial Stem Cell Self-Renewal Requires ETV5-Mediated Downstream Activation of Brachyury in Mice

期刊

BIOLOGY OF REPRODUCTION
卷 85, 期 6, 页码 1114-1123

出版社

OXFORD UNIV PRESS INC
DOI: 10.1095/biolreprod.111.091793

关键词

Brachyury; ETV5; self-renewal; spermatogonial stem cells

资金

  1. National Institute of Child Health and Human Development [HD 052728]
  2. Robert J. Kleberg, Jr., and Helen C. Kleberg Foundation

向作者/读者索取更多资源

Insight regarding mechanisms controlling gene expression in the spermatogonial stem cell (SSC) will improve our understanding of the processes regulating spermatogenesis and aid in treating problems associated with male infertility. In the present study, we explored the global gene expression profiles of the glial cell line-derived neurotrophic factor (GDNF)-regulated transcription factors Ets (E-twenty-six) variant gene 5 (Etv5); B-cell chronic lymphocytic leukemia (CLL)/lymphoma 6, member B (Bcl6b); and POU domain, class-3 transcription factor 1 (Pou3f1). We reasoned that these three factors may function as a core set of transcription factors, regulating genes responsible for maintaining the SSC population. Using transient siRNA oligonucleotides to individually target Etv5, Bcl6b, and Pou3f1 within mouse SSC cultures, we examined changes to the global gene expression profiles associated with these transcription factors. Only modest overlaps in the target genes regulated by the three factors were noted, but ETV5 was found to be a critical downstream regulator of GDNF signaling that mediated the expression of several known SSC self-renewal related genes, including Bcl6b and LIM homeobox 1 (Lhx1). Notably, ETV5 was identified as a regulator of Brachyury (T) and CXC chemokine receptor, type 4 (Cxcr4), and we showed that ETV5 binding to the Brachyury (T) gene promoter region is associated with an active state of transcription. Moreover, in vivo transplantation of SSCs following silencing of Brachyury (T) significantly reduced the number of donor cell-derived colonies formed within recipient mouse testes. These results suggest Brachyury is of biological importance and functions as part of GDNF/ETV5 signaling to promote self-renewal of mouse SSCs cultured in vitro.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据