4.8 Article

Differences in the recognition of glucan elicitor signals between rice and soybean:: β-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells

期刊

PLANT CELL
卷 12, 期 5, 页码 817-826

出版社

AMER SOC PLANT PHYSIOLOGISTS
DOI: 10.1105/tpc.12.5.817

关键词

-

向作者/读者索取更多资源

Partial acid/enzymatic hydrolysis of the beta-(1-->3, 1-->6)-glucan from the cell walls of the rice blast disease fungus Pyricularia oryzae (Magnaporthe grisea) released elicitor-active fragments that induced phytoalexin biosynthesis in suspension-cultured rice cells. From the digestion of the glucan by an endo-beta-(1-->3)-glucanase, one highly elicitor-active glucopentaose was purified as a reduced compound, tetraglucosyl glucitol. The structure of this tetraglucosyl glucitol as well as two other related tetraglucosyl glucitols was elucidated as follows: (1) Glc beta(1-->3)Glc beta(1-->3)(Glc beta(1-->6)) Glc beta(1-->3)Gtucitol (most active fragment); (2) Glc beta(1-->3)(Glc beta(1-->3)Glc beta(1-->3))Glc beta(1-->3)Glucitol; and (3) Glc beta(1-->6) Glc beta(1-->3)Glc beta(1-->3)Glc beta(1-->3)Glucitol. However, a synthetic hexa-beta-glucoside, known as a minimal structural element for the phytoalexin elicitor for soybean cotyledon cells, did not induce phytoalexin biosynthesis in the rice cells. Conversely, the beta-glucan fragment from P. oryzae did not induce phytoalexin biosynthesis in the soybean cotyledon cells, indicating differences in the recognition of glucooligosaccharide elicitor signals in these two plants. Because rice cells have been shown to recognize chitin fragments larger than pentamers as potent elicitors, these results also indicate that the rice cells can recognize at least two types of oligosaccharides from fungal cell walls as signal molecules to initiate defense response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据