4.5 Article

Interfacial rate processes in adhesion and friction

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 104, 期 17, 页码 4018-4030

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp9942973

关键词

-

向作者/读者索取更多资源

Adhesion between solid materials results from intermolecular interactions. The fracture resistance of an adhesive joint is, however, determined jointly by the mechanical deformation in the bulk material and the strength of the interfacial bond. The force needed to break an interfacial bond does not have a fixed value; it depends on the thermal state of the system and the rate at which the force is transmitted to the bond, The concomitant energy dissipation arising from the extension and the relaxation of the interfacial bonds contributes a significant resistance to fracture, which is clearly evident in elastomeric polymers. This issue of interfacial dissipation and its relationship to the length of the interfacial bridges and the rate of crack propagation are addressed with the kinetic theory of bond rupture in the tradition of the models developed by Eyring, Tobolsky, Zhurkov, Bueche, Schallamach, Kausch, and more recently, by Evans and Ritchie, Next, the method is extended to address the velocity-dependent sliding friction of elastomers against low energy solid surfaces. The theme of this article is to point out that certain aspects of adhesion, friction, and fracture may be described under a generalized framework of interfacial kinetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据