4.7 Article

Daily reservoir inflow forecasting using artificial neural networks with stopped training approach

期刊

JOURNAL OF HYDROLOGY
卷 230, 期 3-4, 页码 244-257

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0022-1694(00)00214-6

关键词

real-time forecasting; reservoir inflow; artificial neural networks; stopped training approach

向作者/读者索取更多资源

In this paper, an early stopped training approach (STA) is introduced to train multi-layer feed-forward neural networks (FNN) for real-time reservoir inflow forecasting. The proposed method takes advantage of both Levenberg-Marquardt Backpropagation (LMBP) and cross-validation technique to avoid underfitting or overfitting on FNN training and enhances generalization performance. The methodology is assessed using multivariate hydrological time series from Chute-du-Diable hydrosystem in northern Quebec (Canada). The performance of the model is compared to benchmarks from a statistical model and an operational conceptual model. Since the ultimate goal concerns the real-time forecast accuracy, overall the results show that the proposed method is effective for improving prediction accuracy. Moreover it offers an alternative when dynamic adaptive forecasting is desired. (C) 2000 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据