4.7 Article

Fluid shear stress induces lipocalin-type prostaglandin D2 synthase expression in vascular endothelial cells

期刊

CIRCULATION RESEARCH
卷 86, 期 9, 页码 967-973

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.86.9.967

关键词

sheer stress; vascular endothelial cells; prostaglandins

向作者/读者索取更多资源

Ligands for peroxisome proliferator-activated receptor gamma, such as the thiazolidinedione class of antidiabetic drugs and 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), modulate various processes in atherogenesis. In search of cells that generate prostaglandin D-2 (PGD(2)), the metabolic precursor of 15d-PGJ(2), we identified PGD(2) from culture medium of endothelial cells, To study how PGD(2) production is regulated in endothelial cells, we investigated the role of fluid shear stress in the metabolism of PGD(2). Endothelial cells expressed the mRNA for the lipocalin-type PGD(2) synthase (L-PGDS) both in vitro and in vivo. Loading laminar shear stress using a parallel-plate flow chamber markedly enhanced the gene expression of L-PGDS, with the maximal effect being obtained at 15 to 30 dyne/cm(2). The expression began to increase within 6 hours after loading shear stress and reached the maximal level at 18 to 24 hours. In contrast, shear stress did not alter the expression levels of PGI(2) synthase and thromboxane A(2) synthase. In parallel with the increase in the expression level of L-PGDS, endothelial cells released PGD(2) and 15d-PGJ(2) into culture medium. These results demonstrate that shear stress promotes PGD(2) production by stimulating L-PGDS expression and suggest the possibility that a peroxisome proliferator-activated receptor gamma ligand is produced in vascular wall in response to blood flow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据