4.8 Article

Atmospheric degradation of volatile methyl-silicon compounds

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 34, 期 10, 页码 1970-1976

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es9910053

关键词

-

向作者/读者索取更多资源

The current widespread use of poly(dimethylsiloxane)s (PDMS) in a broad range of applications leads to their release into soil environments where they degrade to monomeric products, primarily dimethylsilanediol, most of which enter the atmosphere by volatilization. The major degradation pathway of volatile organosilicon compounds in the atmosphere is expected to be a reaction with hydroxyl (OH) radicals. In this work, the kinetics of the gas-phase reactions of dimethylsilanediol, trimethylsilanol, and tetramethylsilane with the OH radical were measured using a relative rate method which employed the N2H4 + O-3 reaction as a nonphotolytic source of OH radicals, with analysis by Fourier transform infrared (FT-IR) spectroscopy in a 5870 L chamber. The measured values of the OH radical reaction rate constants (cm(3) molecule(-1) s(-1)) at 298 +/- 2 K are as follows: dimethylsilanediol, (8.1 +/- 1.0) x 10(-13); trimethylsilanol, (7.2 +/- 0.8) x 10(-13); and tetramethylsilane, (8.5 +/- 0.9) x 10(-13). These values lead to an estimate of tropospheric lifetimes with respect to reaction with the OH radical of ca. 15 days for these organosilicon compounds. FT-IR spectroscopy and atmospheric pressure ionization mass spectrometry (API-MS) were employed to analyze the products of OH radical- and Cl atom-initiated photooxidations of dimethylsilanediol and trimethylsilanol. Infrared signatures of the probable formate ester intermediate products from both silanols were detected. API-MS analyses indicated the formation of methylsilanetriol from dimethylsilanediol, of both dimethylsilanediol and methylsilanetriol from trimethylsilanol, and of the corresponding intermediate formate esters. Possible reaction mechanisms are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据