4.7 Article Proceedings Paper

MEMS micro-valve for space applications

期刊

SENSORS AND ACTUATORS A-PHYSICAL
卷 83, 期 1-3, 页码 188-193

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/S0924-4247(99)00382-9

关键词

MEMS; valve; piezoelectric; actuator; space

向作者/读者索取更多资源

We report on the development of a micro-electro-mechanical systems (MEMS) valve that is designed to meet the rigorous performance requirements for a variety of space applications, such as micro-propulsion, in situ chemical analysis of other planets, or microbiology. These systems often require very small yet reliable silicon valves with extremely low leak rates and long shelf lives. Also, they must survive the perils of space travel, which include unstoppable radiation, monumental shock and vibration forces, as well as extreme variations in temperature. Currently, no commercial MEMS valve meets these requirements. At JPL, we are developing a piezoelectric MEMS valve that attempts to address the unique problem of space. We begin with proven configurations that may seem familiar. However, we have implemented some major design innovations that should produce a superior valve. The JPL micro-valve is expected to have an extremely low leak rate, limited susceptibility to particulates, vibration or radiation, as well as a wide operational temperature range. Published by Elsevier Science S.A. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据