4.6 Article

Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 275, 期 21, 页码 15733-15740

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M000389200

关键词

-

向作者/读者索取更多资源

The axonal microtubule-associated phosphoprotein tau interacts with neural plasma membrane (PM) components during neuronal development (Brandt, R., Leger, J., and Lee, G. (1995) J. Cell Biol. 131, 1327-1340). To analyze the mechanism and potential regulation of tau's PM association, a method was developed to isolate PM-associated tau using microsphere separation of surface-biotinylated cells. We show that tan's PM association requires an intact membrane cortex and that PM-associated tau and cytosolic tau are differentially phosphorylated at sites detected by several Alzheimer's disease (AD) diagnostic antibodies (Ser(199)/Ser(202), Thr(231), and Ser(396)/Ser(404)). In polar neurons, the association of endogenous tau phosphoisoforms with the membrane cortex correlates with an enrichment in the axonal compartment. To test for a direct effect of AD-specific tau modifications in determining tau's interactions, a phosphomutant that simulates an AD-like hyperphosphorylation of tau was produced by site-directed mutagenesis of Ser/Thr residues to negatively charged amino acids (Glu). These mutations completely abolish tau's association with the membrane cortex; however, the construct retains its capability to bind to microtubules. The data suggest that a loss of tau's association with the membrane cortex as a result of phosphorylation at sites that are modified during disease contributes to somatodendritic tau accumulation, axonal microtubule disintegration, and neuronal death characteristic for AD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据