4.4 Article

Electron microscopy study of volcanic tuff alteration to illite-smectite under hydrothermal conditions

期刊

CLAYS AND CLAY MINERALS
卷 48, 期 3, 页码 339-350

出版社

CLAY MINERALS SOCIETY
DOI: 10.1346/CCMN.2000.0480305

关键词

hydrothermal alteration; illite-smectite; SEM-EDS; TEM-AEM; volcanic tuff

向作者/读者索取更多资源

Experimental alteration of volcanic tuff from Almeria, southeastern Spain, was performed in solutions with different Na/K ratios (0.01, 1, 10, and 100), different total salt concentrations (0.01, 0.1, 0.2, 0.33, and 1 M), and in deionized water, at 60, 80, 120, and 160 degrees C, for periods of 60, 90, 180, and 360 d. Two particle size fractions of volcanic tuff were used: 10-200 and 20-60 mu m. Alteration products were examined by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), laser-particle size analysis, scanning electron microscopy equipped with an energy dispersive X-ray spectrometer (SEM-EDS), image computer analysis, and transmission electron microscopy with microanalysis (TEM-AEM). XRD detected neoformed phases only in the products from experiments of 180-360 d at high temperatures (120-160 degrees C), and with Na/K ratios above unity and in deionized water. The synthesized phase is a random mixed-layer illite-smectite (I-S) with 75% smectite. The quantity of newly formed I-S, determined by FTIR, ranged between 3-30%. There was no apparent change in grain size and shape of the grains after the experiments as compared to before. SEM-EDS and TEM-AEM revealed the following alteration sequence: 1) intense etching on glass-grain surfaces; 2) formation of hemispherical morphologies on grain surfaces; 3) precipitation of very thin, individual flakes of illite-smectite on glass-grain surfaces; 4) development of I-S at the edges of glass grains; and 5) development of I-S honeycomb structures either covering large areas of the glass grains or resulting from the complete alteration of glass grains. A direct transformation of glass to I-S seems to be the major reaction mechanism, although there also is evidence of glass dissolution and subsequent I-S precipitation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据