4.1 Article

Dipeptide formation on engineered hybrid peptide synthetases

期刊

CHEMISTRY & BIOLOGY
卷 7, 期 6, 页码 373-384

出版社

CURRENT BIOLOGY LTD
DOI: 10.1016/S1074-5521(00)00118-6

关键词

dipeptide formation; hybrid enzymes; nonribosomal peptide synthetase

向作者/读者索取更多资源

Background: Nonribosomal peptide synthetases (NRPSs) are modular 'megaenzymes' that catalyze the assembly of a large number of bioactive peptides using the multiple carrier thiotemplate mechanism. The modules comprise specific domains that act as distinct units to catalyze specific reactions associated with substrate activation, modification and condensation. Such an arrangement of biosynthetic templates has evoked interest in engineering novel NRPSs. Results: We describe the design and construction of a set of dimodular hybrid NRPSs. By introducing domain fusions between adenylation and thiolation (PCP) domains we designed synthetic templates for dipeptide formation. The predicted dipeptides, as defined by the specificity and arrangement of the adenylation domains of the constructed templates, were synthesized in vitro. The effect of the intramolecular fusion was investigated by determining kinetic parameters for substrate adenylation and thiolation. The rate of dipeptide formation on the artificial NRPSs is similar to that of natural templates. Conclusions: Several new aspects concerning the tolerance of NRPSs to domain swaps can be deduced. By choosing the fusion site in the border region of adenylation and PCP domains we showed that the PCP domain exhibits no general substrate selectivity. There was no suggestion that selectivity of the condensation reaction was biased towards the donor amino acid, whereas at the acceptor position there was a size-determined selection. In addition, we demonstrated that a native elongation module can be converted to an initiation module for peptide-bond formation. These results represent the first example of rational de novo synthesis of small peptides on engineered NRPSs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据