4.7 Article

A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series

期刊

WATER RESOURCES RESEARCH
卷 36, 期 6, 页码 1519-1533

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2000WR900044

关键词

-

向作者/读者索取更多资源

A generalized framework for single-variate and multivariate simulation and forecasting problems in stochastic hydrology is proposed. It is appropriate for short-term or long-term memory processes and preserves the Hurst coefficient even in multivariate processes with a different Hurst coefficient in each location. Simultaneously, it explicitly preserves the coefficients of skewness of the processes. The proposed framework incorporates short-memory (autoregressive moving average) and long-memory (fractional Gaussian noise) models, considering them as special instances of a parametrically defined generalized autocovariance function, more comprehensive than those used in these classes of models. The generalized autocovariance function is then implemented in a generalized moving average generating scheme that yields a new time-symmetric (backward-forward) representation, whose advantages are studied. Fast algorithms for computation of internal parameters of the generating scheme are developed, appropriate for problems including even thousands of such parameters. The proposed generating scheme is also adapted through a generalized methodology to perform in forecast mode, in addition to simulation mode. Finally, a specific form of the model fur problems where the autocorrelation function can be defined only for a certain finite number of lags is also studied. Several illustrations are included to clarify the features and the performance of the components of the proposed framework.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据